If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+n-15=0
a = 6; b = 1; c = -15;
Δ = b2-4ac
Δ = 12-4·6·(-15)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-19}{2*6}=\frac{-20}{12} =-1+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+19}{2*6}=\frac{18}{12} =1+1/2 $
| 20/14=a/7 | | (6x-74)+(3x+16)=180 | | (3x+23)=( | | 8x+21=77 | | -19=7(1+6n)+8(7=5n) | | v^2-10v-39=0 | | -8b-(b-3)=97 | | -19=7(1+6n)+(7=5n) | | x3-10=8 | | 3x+-4=x-8 | | x/5.43=12 | | 20x+17=157 | | 3j-6=4j+7 | | (3x+23)(2x+17)=110 | | 99=5y+14 | | 3J-7=4j+7 | | 18x+11=-101 | | 6x+18=3x+42 | | x3-10=8= | | 3x+23x2x+17=110 | | 3J7,-6=4j+7 | | 5x=18-x5x=18-x | | 17=16-163/x | | 26=13q | | -6a=44 | | (x-2)2)-3x(2-x)=4x(x-3)+10 | | 0.75*(8*b+4)-1=4*b+14 | | 17x+15=66 | | 204=-64x+192 | | 66+n-17=19 | | 5x+52=87 | | -3(3-4x)=7x+36 |